Genom Projesi

Genom Projesi

Bilim dünyası, yaşamı alt üst edecek yeni bir gelişmeye daha imza atarak insan DNA'sının şifresini çözmeyi başardı. Çıkarılan "gen haritası" sayesinde kalp ve kanser hastalığı tarihe karışacak ve insan yaşamının kalitesi artarak uzayacak. Bilim tarihinde yeni bir dönüm noktası olan gelişme, bilim adamlarının on yıla yakın süredir üzerinde çalıştıkları insan genlerinin biyokimyasal şifresinin çözülmesiyle elde edildi.

Eski ABD Başkanı Bill Clinton ve İngiltere Başbakanı Tony Blair yaptıkları ortak açıklama ile insanın genetik haritasının çözülmesi için yürütülen ''İnsan Genom Projesi''nin ilk aşaması tamamlandığını bildirdiler. Genlerin deşifre edilmesiyle Alzheimer'den kansere değin bugüne kadar baş edilemeyen birçok hastalığa çare bulunacak. Yaşam kalitesi artacak, insan ömrü uzayacak.
Eski ABD Başkanı Bill Clinton, uluslararası çalışmalar sonucu insanların genlerinin haritasının ortaya çıkarılmasını, tarihin en büyük buluşlarından biri olarak nitelendirerek "Tanrı'nın yaşamı yarattığı dili bugün öğreniyoruz" dedi.

Clinton, konuşmasında, genlerin haritasının çıkarılmasının, büyük İtalyan matematikçi, astronom ve fizikçi Galileo Galilei'nin buluşlarıyla eşit öneme sahip olduğunu belirterek, bu buluşla kanser, şeker, Parkinson ve Alzheimer hastalığının tedavisinde yeni bir devir açılacağını anlattı. İnsan genlerinin haritasının çıkarılmasının, antibiyotiklerin bulunuşundan daha büyük bir başarı olduğunu anlatan "Bu, 21'inci yüzyılın ilk dev teknolojik zaferi" diye konuştu.

Gen haritasının ortaya çıkarılması özellikle Amerikan, İngiliz, Alman ve Japon bilim kuruluşlarının uzun yıllar süren çalışmaları sonucunda sağlandı. Fransız ve Çinli bilim adamları da bu çalışmaya katkıda bulundu.

Her şey 1953 yılında iki bilim adamının canlı hücresinde bir çeşit genetik şifre olan DNA'yı bulmasıyla başladı. İngiliz bilim adamları Francis Crick ve Amerikalı meslektaşı James Watson, DNA'yı bulduklarında ''yaşamın sırrını keşfettikleri'' söylüyorlardı. Herkes onlara şüpheyle bakıyordu ama yüzde yüz haklıydılar. Hücre çekirdeğinde yer alan DNA, bir insanın göz renginden ten rengine, vücut yapısından boyuna kadar çeşitli fiziksel özelliklerini belirlemenin yanı sıra, sağlığı ve yaşam süresi konusunda da önemli rol oynuyordu.

1)İnsan Genom Projesi Nedir?
18 ülkenin destek verdiği proje, 1990 yılının ekim ayında başladı. Projenin amacı insanın gen haritasının, yani genetik şifresinin çözülmesi.
2)Gen Haritası Nedir?
Popüler bilim, araştırmalarındaki sınırsızlığını çağımızın belki de en önemli nedenine “gen” lere yönelterek devam ettirmeye çalışıyor. İnsan gen haritası projesi, bitiş çizgisine geldi.
Bu Proje, 250 milyon dolarlık maliyeti ile bugüne dek gerçekleştirilen en pahalı, en kapsamlı bilimsel çalışma. Araştırmayı destekleyenler, haritanın tümüyle çıkartılması sonucunda, ömrün uzamasının yanı sıra, kanserden kellik sorununun çözümüne, bunamadan depresyona dek pek çok hastalığın tanım ve tedavisinde köklü değişikliklere gidileceğini ve kader kavramının değişik boyutlara ulaşabileceğini öngörüyor.

Karşı olanlar ise, insan yaşamında gizliliğin sona ereceğinden, iş ve çalışma hayatında genetik ırkçılığın başlayacağından kaygı duyuyor. Projenin tamamlanmak üzere olduğu şu günlerde kesin olan tek şey, bitiş çizgisini göğüslemenin en çok biyotek endüstrisinin işine yarayacağıdır.
İnsan genlerinin deşifre edilmesi konusunda çalışan beş laboratuarın yetkilileri, son güne kadar rutin olarak her cuma, sabah saat 11.00'de birbirlerini telefonla arayarak gelişmeler hakkında bilgi veriyordu.

2000 Mart ayının ortalarında İnsan DNA'sındaki 3.2 milyar dolayındaki kimyasal molekülün iki milyarı okunmuş durumdaydı. Diğer bir deyişle, çalışmanın yaklaşık üçte ikisi bitmişti. Üzerinde 1.100 kişinin (bilgisayar uzmanları, biyologlar ve teknikerlerden oluşan bir uzman ordusu) çalıştığı projeye on üç yıl önce başlandı. Altı ülkede, on altı laboratuarda sürdürülen çalışmaların büyük bir kısmı ABD hükümeti ve İngiliz Wellcome Trust tarafından finanse edildi. Konuya yakın ilgi duyan ve devletle yarışa kalkan özel sektör bitiş çizgisini önce göğüslemek için hızını artırınca, özel sektörün soluğunu ensesinde hisseden kamu görevlileri, günde yirmi dört saat, haftada yedi gün çalışarak dakikada on iki bin hücresel molekülü okuma hızına ulaştı. Ve haritanın yaklaşık yüzde 90'ı, yüzde 99.9'luk bir doğrulukla açıklandı.

Artık, insan yaşamının temel yasaları belirlenecek; Homo Sapien'lerin yaşam kaynağının gizi, gün ışığına çıkacak. Açıklanan bilgiler sonucunda, insan genlerinin % 98’inin şempanzeyle benzerlik göstermesi, madde aleminin son halkası olan insanın belli bir tekamül neticesinde bu noktaya geldiğini ve Evrimleşme modelinin mantıklı nedenlere dayandığını gösteriyor.
Harvard Üniversitesi biyologlarından Walter Gilbert proje hakkında şöyle konuşuyor: ''İnsan olmanın ne anlama geldiği böylece anlaşılacak.'' Bu bilgi tıp konusunda devrim yaratacağı gibi, biyotek endüstrisini de borsanın gözdeleri arasına sokacak.

Apple ilk ev bilgisayarı olarak 1977 yılında piyasaya çıktığı zaman, kimse yıllar sonra İnternetin yaşantımıza böylesine gireceğini tahmin etmiyordu. Benzer şekilde, insan gen haritasının tamamının ortaya çıkmasının yaşantımızı ve insan kimliğimizi nasıl etkileyeceğini hemen tahmin etmemiz çok zor. Ancak tanı ve tedavi açısından doktorlar müthiş bir bilgi kaynağına kavuşacaklar. Örneğin, bir biyoçipin üzerine kayıtlı bilgilerden, ileri yaşlarda prostat kanserine, Alzheimer'a yakalanıp yakalanmayacağımızı, hastalık tipine göre vücudumuzun hangi ilaca cevap vereceğini öğrenebileceğiz. Bilim adamları bir yaranın iyileşmesi, bebeğin organlarının büyümesi, saçların dökülmesi, göz kenarlarının kırışması durumunda hangi genin devreye girdiğini öğrenecekler. Böylece bu genlere müdahale ederek tedavi olanağını artıracaklar veya önlem alınmasını sağlayacaklar. Bebekler, sperm ile yumurta buluşmadan önce tasarlanabilecek. İşverenler, eleman alırken genetik yapısına göre adam seçecekler; genetik yapısını onaylamadıkları kişilere iş vermeyecekler. Cambridge yakınlarındaki Sanger Centre yetkililerinden John Sulston, şöyle konuşuyor:''Gelecek on yıl, yüz yıl, hatta bin yılda insanın gen haritası biyolojinin temelini oluşturacak.''

Gen haritasında genler ''ATGCCGCGGCTCCTCC'' şeklinde, harflerin yan yana gelmesiyle tanımlanıyor. Her harf, adenin (adenine), sitosin (cytosine), guanint (guanine), timin (thymine) gibi bir molekülü temsil ediyor. Deriden kaslara, karaciğerden akciğere, insan vücudundaki her hücre aynı DNA'nın bir kopyasını taşır. Bir canlı türünün hücrelerinde bulunan DNA'ların toplamı genomunu oluşturur. ''Genetik Çağı'' olarak isimlendirebileceğimiz çağımızda, homoseksüalite, risk alma, utangaçlık, endişe, kanser, Alzheimer gibi hastalık ve kişilik özelliklerinin her biri için özel bir genin saptanmasına karşın, bir genin gerçek var olma nedeni proteinlerdir. A'lar, T'ler, C'ler ve G'ler kodu oluşturur. Üçlü harf takımlarından her biri, hücrenin içindeki özel bir mekanizmayı belirli bir amino asidi yakalaması için yönlendirir. Örneğin TGG, triptofan adlı amino asidi yakalamak içindir. Yeterli miktarda amino asidi yan yana getirirseniz, protein elde edersiniz (yiyecekleri sindirmesi için mide enzimleri, korbonhidratları metabolize etmek için insülin, depresyona yol açan beyin kimyasalı, ergenlik çağını başlatan seks hormonları gibi). Bu durumda gen bir yönetmelik gibidir. Aradaki fark, burada talimatların molekül bazında yazılmasıdır. İnsanlarda ortalama seksen bin gen bulunur ve aramızdaki benzerlik, yüzde 99.9 oranındadır. Bu da şu anlama gelmektedir: Bin kimyasal harfin içinden bir tanesi, Woody Allen' i Bruce Willis 'ten ayıran genomu oluşturur.

Daha tamamlanmamasına karşın, İnsan Gen Haritası Projesi'nin mimarları, biyolojinin ön plana çıkıp, diğer bilim dallarının pabucunu dama atacağını ileri sürüyor. Başlangıcında istenmeyen çocuk konumunda olan proje, daha sonra Enerji Bakanlığı yetkililerinden Charles De Lisi 'nin çabalarıyla yavaş yavaş biçimlenmeye başladı. İlk başlarda çalışmayı şiddetle eleştiren biyologlar, insan gen haritasının yüzde doksan yedisinin tek tek saptanamayacağını ileri sürüyorlardı. Bu ''çöp'' DNA'ları çözümlemenin ne anlamı vardı? Özellikle neyin çöp, neyin gen olduğunun ayırdına varamadıktan sonra, insanın gen haritasını çıkartmak neye yarardı? Ne var ki, uzun süren tartışmalardan sonra, Amerikan Kongresi'nden de mali kaynak sağlanınca, bilim adamları 2005 yılında tamamlanacağını öngördükleri projenin temelini 1988 yılında attılar. Bu arada, Mayıs 1988'de gen avcısı J. Craig Venter, Celera adını verdiği özel şirketi kurarak insan gen haritasını üç yıl içinde tamamlayacağını ileri sürdü. Bu girişim, Amerikan İnsan Gen Haritası Araştırma Enstitüsü başkanı Francis Collins 'i elini çabuk tutması gerektiği yolunda uyardı. Projenin ortalarında olmaları gerektiği dönemde, daha yüzde üçünü tamamlamış olmaları Collins'i yıldırmadı; tam tersine tetikledi. Elemanlarını kontrol ve kanıt aşamalarında fazla oyalanmamaları konusunda uyardı.

İnsan gen haritasının tamamlanması ne anlama geliyor?
MIT'nin Whitehead Enstitüsü'nden Eric Lander, bu çalışmayı 1800'lü yılların sonunda hazırlanan elementlerin periyodik tablosuna benzetiyor. ''Genomik, bence biyolojinin periyodik tablosu'' diyen Lander, bilim adamlarının tüm olayları bu liste yardımıyla açıklayacaklarını öne sürüyor. Bu liste bir CD-ROM'a sığabiliyor. Halihazırda, hastalardan DNA örnekleri alan bilim adamları, floresan moleküller bağladıkları örneği cam bir çip üzerine serpiştiriyor. Cam çipin üzerinde on bin adet bilinen gen bulunuyor. Lazer ışını floresanı okuduğu zaman, çipin üzerindeki bilinen genlerden hangisinin hastadan alınan örnekte olduğu anlaşılıyor. Son aylarda bu yöntem yardımı ile kas tümörlerini, farklı lösemi türlerini, hangi prostat kanseri türünün öldürücü olduğunu, depresyon geçiren bir beyinden alınan nöron ile normal beyinden alınan nöron arasındaki farkı teşhis etmek mümkün olabiliyor.
İnsanoğlunun tarihi, DNA'sında kayıtlıdır. ''DNA farklılıklarını tespit ederek göçlerin izlediği yolu tespit etmek mümkün'' diye konuşan Lander, ''Bilim adamları, eski Fenikeli tüccarların İtalyan limanlarını ziyaret ettikleri zaman geride bıraktıkları kromozomları tanıyabiliyor'' diye konuşuyor. Benzer şekilde genetik veriler, Güney Afrika'da yaşayan Lembaların 2.700 yıl önce Ortadoğu'dan göç eden Yahudi kavminin çocukları olduğu tezini destekliyor. Connaught 'da yaşayan İrlandalıların yüzde 98'inin dört bin yıl önce İrlanda'ya yerleşen avcı-toplayıcı topluluklardan geldiği de bu şekilde ortaya çıkmış oldu.

a)Ahlaki kaygılar:
Yaşam kitabını deşifre etmek ne yazık ki, ahlaki sorunları da beraberinde getiriyor. Genetik kodlarımızın anlaşılması, insan türünün insan eliyle şekillendirilmesi olasılığını da güçlendiriyor. Biyologlar genomik biliminden yararlanarak yedek parça listesi hazırlayabilirler; ana baba adayları doğmamış çocuklarını ''ısmarlayabilir'', bilim adamları ellerindeki bilgilerle, istenilen karakterde, vücut yapısında ve bilişsel yetenekte insanlar üretebilir.
Bu durum, pratikte pek çok sorunu da beraberinde getiriyor. Çocuklarımızı ve kendimizi değiştirmek kolaylaştıkça, değişiklik geçirmemiş olanları kabul etme hoşgörüsünde de azalma görülebilir. Kent Üniversitesi Hukuk bölümünden Lori Andrews , “genetik testler yardımıyla zekâ kusurlarının, şişmanlığın, kısa boyun (ve diğer istenmeyen özelliklerin) önceden bilinmesi durumunda, toplumlar, anne ve babası tarafından kusurlarıyla doğmasına izin verilen çocukları küçük görmeye başlar mı?” sorusunu soruyor. Şimdiden bazı doktor ve hemşirelerin, doğumdan önce teşhis edilebilen kusurlarla dünyaya gelen çocukların anne ve babalarını, ne durumda olacağını bile bile çocuklarını dünyaya getirdikleri için eleştirdikleri ve kınadıkları görülüyor. Dünyadaki bütün ana baba adaylarının çocuklarını ısmarladığını varsayarsak, bunların bir araya gelmesinden ne gibi bir dünya oluşur, şimdiden bilinmez. Bu arada bazı hastalık genlerinin başka hastalıklara karşı vücuda direnç sağladığı biliniyor. Örneğin, orak hücre anemisi olarak bilinen bir anemi türü, sıtmaya karşı direnç oluşturuyor. Bu durumda anemiyi yok etmek için genini ortadan kaldırmak, sıtma salgınına yol açar mı? Bu soruyu daha da genişletirsek, ''kötü'' genleri nakavt etmek, evrimi nasıl etkiler? İşte üzerinde durulması gereken en önemli konulardan biri de budur.

b)Uygulama aşamasındaki sorunlar:
Genom projesinin başlamasıyla sigorta ve insan kaynakları şirketlerinin genetik bilgileri insanların aleyhine kullanacakları doğrultusunda kaygılar gittikçe tırmanıyor. Sistematik kamu araştırmaları şimdilik ufukta çok büyük tehlikelerin olmadığını varsaysa da, dedikoduların önünü almak mümkün değil. Pek çok insan, ölümcül bir hastalığın genini taşıdığı için sigorta şirketleri tarafından aforoz edilebilir. Başka bir kişi, işvereni tarafından aynı gerekçeyle işten atılabilir. Şu anda ABD'nin otuz dokuz eyaletinde genetik testlere dayanarak sigorta poliçesini düzenlemek; on beş eyalette de genetik testlerden elde edilen sonuçlara göre işten çıkartmalar yasaklandı. Ne var ki yasalardaki açıklardan yararlanan işveren ve sigortacılar, genetik testleri gizliden gizliye incelemeyi sürdürüyor. 1999'da yapılan bir araştırmaya göre ABD'de orta ve küçük ölçekli şirketlerin yüzde otuzu terfi ve işten çıkartmalarda çalışanlarının genetik testlerinden yararlanıyor.
İnsan Genom Projesi'nin tamamlanması başka bir sorunu daha getirecek. İnsanlar genlerinin işlevselliğini öğrendikleri anda kendileri hakkında ne düşünecek? Büyük bir olasılıkla başlarına gelen tüm olumsuzlukların suçunu genlerine yükleyecekler. İnsanlarda kaderciliğe karşı büyük bir eğilim olduğunu söyleyen Collins, ''Genom projesi işte bu kolaycılığı sağlayacak. Genler günah keçisi görevini yüklenecek'' diyor. Şu anda genomik bilimi doğuş aşamasında. Perde tümüyle kalktığı zaman, çocuklarımızın neyle karşılaşacağı henüz bilinmiyor. Bugün mistik çevreler bile gen konusundaki gelişmeler karşısında şaşkınlığını gizleyemiyor. Her şeye rağmen, Gen konusu dikkâtle izlenmeye değer.

3)Kromozom Nedir?
Her canlı gibi insan da trilyonlarca hücreden meydana gelir. Hücre, bitkisel ya da hayvansal her türlü yaşam biçiminin en küçük birimidir. Her hücre bir sitoplazma ve çekirdekten meydana gelir. Çekirdeğin içinde ise kromozom adı verilen ipliksi parçalar bulunur. Kromozomlar, elektron mikroskobunda İ, V, J harfleri gibi biçimlerde görünür ve boyutları mikronla ölçülür. Kromozomların sayısı canlı türleri de değişiklik gösterir. Örneğin sirke sineğinde 8, kurbağada 26, farede 42, köpekte 78 kromozom vardır. İnsanın kromozom sayısı ise 46'dır. 22'si çift otozom kromozomdur. İnsan hücresinde 1 çift de eşeysel kromozom bulunur ve toplam sayı 46 eder. Kromozomlar, molekül yapıları çok iyi bilinen DNA (dezoksiribonükleik asit) zinciri ile ‘‘histon’’ denilen protein zincirinden oluşur. DNA zincirleri de özgül proteinleri sentezlemekle görevli ‘‘gen’’ adı verilen birimlerden oluşur.

Döllenme sırasında annenin yumurtasındaki 23 kromozom, babanın spermindeki 23 kromozomla birleşir. İşte bu 46 kromozom insanın yaşamında belirleyici rol oynar. Kromozomlarda yer alan ve sayıları 25 bin ile 100 bin arasında olduğu tahmin edilen genlerin oluşturduğu zincir, kişinin göz renginden boyuna, yaşam süresinden yakalanacağı hastalıklara kadar pek çok şeyi programlar. Bu genetik programlar, DNA altünitesi denen (A, T, C, G) kimyasallarıyla programlanır. Bilim adamları özellikle, 21. kromozomun içindeki 14 geni tam bir saatli bomba olarak niteliyorlar. Bu 14 genden birinde meydana gelen en ufak bir arıza Alzheimer, epilepsi, Parkinson veya lösemi hastalığına neden oluyor. Ayrıca halk arasında ‘‘Mongolluk’’ denilen Down sendromu ortaya çıkabiliyor.
Her insan hücresinde yaşamın yapı taşları kabul edilen 24 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar.

1.kromozom : Alzheimer, Ağır işitme
2.kromozom : Belleğin oluşumuyla ilgili bilgiler
3.kromozom : Akciğer kanseri
4.kromozom : Çeşitli kalıtımsal hastalıklar
5.kromozom : Akne, Saç dökülmesi
6.kromozom : Diyabet, Epilepsi
7.kromozom : Kronik akciğer iltihabı, Şişmanlık
8.kromozom : Erken yaşlanma
9.kromozom : Deri kanseri
10.kromozom : Bilinmiyor
11.kromozom : Diyabet
12.kromozom : Metabolizma hastalıkları
13.kromozom :Göğüs kanseri, Retina kanseri
14.kromozom : Alzheimer
15.kromozom : Doğuştan beyin özrü
16.kromozom : Crohn hastalığı
17.kromozom : Göğüs kanseri
18.kromozom : Pankreas kanseri
19.kromozom : Bilinmiyor
20.kromozom : Bilinmiyor
21.kromozom : Down sendromu, Alzheimer, Parkinson, Lösemi, Depresyonlar
22.kromozom : Yeni keşfedildi, Kemik iliğinin oluşumunu düzenliyor
23.kromozom (Y) : Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor
24.kromozom (X) : İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor.

4)DNA Nedir?
Deoksiribonükleik asit DNA, Dünya üzerindeki bütün canlı organizmaların özelliklerini belirleyen olağanüstü bir kimyasal maddedir.Bir ağacın yapraklarının rengini, bir kurdun azı dişlerinin büyüklüğünü, bir zürafanın boyunu veya ayak parmaklarımızın şeklini DNA belirler.
DNA, hücre çekirdeklerinin hepsinde bulunan kromozomları oluşturur.Her bir kromozomda, tek,uzun bir DNA molekülü vardır. Bir DNA molekülü insanın tek bir saç telinden binlerce kere daha ince olduğu halde yüzlerce ciltlik ansiklopedinin bilgilerini içermektedir..Bir DNA molekülünün belirli bir genetik özellik İçeren kesitine GEN adı verilir.

DNA bir organizmanın oluşuma ilişkin bilgileri taşır.DNA molekülleri, hücre çekirdeğinde bulunurlar ve vücudumuzda bulunan tüm proteinleri oluşumu sırasındaki kodlamış bilgileri içerir.DNA’nın protein yapma işlemi ,inanılmayacak derecede kusursuzdur. DNA molekülü bükülmüş bir merdivene benzer.Her bir hücrenin DNA merdiveni hem anneden hem babadan gelen genleri içerir.Merdivenin basamakları,timin (T), adenin (A), sitozin (C), ve guanin ( G),adı verilen bazların kusursuz düzenlenmesiyle oluşur.Her bir aşamanın tamamlanması için bir baz çifti, belirli bir kombinasyonla eşleşir. T her zaman A ile, A da her zaman G ile eşleşir. Buna karşılık, C her zaman G ile ve G de her zaman C ile eşleşir. BU eşleşme, DNA’nın kendini kopyala işleminde önemli rol oynar.
Kopyalama işlemi başladığında DNA dizeleri çözülür ve baz çiftleri birbirinden ayrılır. Bu aşamada molekül, açılmakta olan bir fermuara benzer.Daha sonra serbest halde bulunan timin (T), adenin ( A), guanin (G), ve sitozin ( C),içeren nükleotidler, dizideki eşleşmemiş bazlara katılırlar. Serbest halde bulunan A’lar T’lerle, serbest halde bulunan T’lerle A’lar eşleşir.Aynı şekilde serbest halde bulunan G’ler C’lerle,ve C’ler G’lerle eşleşir.

Dizideki eşleşmemiş moleküllerin her biri, yalnızca belirli bazlarla eşleşeceği için DNA kendisinin mükemmel bir kopyasını üretebilir.Böylece eskiden tek bir DNA molekülün bulunduğu yerde kısa bir süre içinde iki özdeş DNA molekülü ortaya çıkar. DNA’nın içerdiği bilgiler bu şekilde kopya edilirken, bir hücre bölünebilir ve bir organizmanın nasıl oluşacağı hakkındaki bilgilerde nesilden nesile geçmiş olur.

5)Gen Nedir?
Gen DNA zincirindeki belli bir uzunluktaki birimdir. Kromozom DNA'nın özel bir şekilde paketlenmesi sonucu ortaya çıktığına göre her kromozomda çok sayıda gen var demektir. Her bir gen diğerinden farklı bir şifre içerir ve farklı bir proteini kodlar. Eğer vücutta bir genin kodladığı proteine gereksinim varsa o gen aktif hale geçerek üzerindeki şifre, haberci RNA adı verilen bir yapı şeklinde kopyalanır. Bu yapı hücrenin sitoplazmasındaki ilgili birimlere gelerek kalıp vazifesi görür ve o proteinin yapımı sağlanır.

a)Vücutta bulunan hücrelerin hepsinde aynı genler var mıdır?
Her gen her hücrede vardır. Ancak hücrenin özelliğine göre bazı genler bazı hücrelerde çalışmaz yanı atıl durumdadır. Örneğin tiroit hücresinde hormon yapımını kontrol eden gen, mide hücresinde de vardır ancak işlev görmemektedir. Zaten aynı genleri çalışan hücreler bir araya gelerek dokuları oluştururlar. Diğer yandan bazı genler ortak gendir ve her hücrede aynı işlevlere sahiptir.

b)Genlerin görevi nedir?
Genler içerdikleri şifreler dolayısıyla vücuttaki her türlü olayı uzaktan kumanda sistemi sayılabilecek bir duyarlılıkla kontrol ederler. Bazı genler vücuda gerekli kimyasal yapıların ortaya çıkmasını sağlarken bazı genler diğer genler üzerinde düzenleyici olarak şifrelenmiştir. Bu genlerin çalışabilmesi için bir uyarana gereksinimleri vardır. Vücudun tiroit hormonuna olan gereksinimi artar yada herhangi bir nedenle kanda tiroit hormonlarının miktarı azalırsa önce beyinde bulunan hipofizdeki ilgili gen, TSH hormonunun yapımını sağlar bu hormon kan yoluyla tiroit hücresine ulaşır ve hücrenin zarına yapışarak çekirdekteki hormon yapımını sağlayacak olan genlere mesaj iletir. Bu mesajı iletecek olan kimyasal yapılar da başka bir gen tarafından yaptırılmakta ve hücre içindeki miktarı düzenlenmektedir. Çekirdekte bu mesajı alan gen tiroit hormonlarını yaptırmak üzere gerekli şifreyi RNA adı verilen bir haberci ile hücrenin sitoplazmasına gönderir ve hormon yapımı başlar.

c)Genlerin işlevinde ne gibi değişiklikler olabilir?
Herhangi bir nedenle yapısı değişen gen, ya fonksiyon göremez yani devre dışı kalır,ya da aşırı fonksiyon görmeye başlar. Her iki halde de genin kontrol ettiği işlevlerde bozulma ortaya çıkar. Örneğin kan şekerini kontrol eden insülinin yapımını sağlayan gende fonksiyon kaybettirici bir değişiklik olursa insülin yapımı azalır ve bireyde şeker hastalığı ortaya çıkar.

d) Hücre bölünmesi nedir ? Ana hücreden yavru hücreye genetik şifre nasıl taşınmaktadır?
Canlılar türlerini devam ettirebilmek veya hasara uğramış bölümlerini tamir edebilmek için hücresel seviyede bölünmeye gereksinim duyarlar. Bunun için genetik şifrenin aynısının yavru hücrelere aktarılması gerekir. Örneğin hormon yapımını da artırmak için bir tiroit hücresinin bölünmesi gereksin. Bu gereksinim ortaya çıkınca büyüme faktörlerinden bir kısmı ve TSH hormonu tiroit hücre zarına yapışır ve çekirdeğe çeşitli proteinler aracılığıyla bölünme işleminin başlatılması için sinyal gönderir. Bu sinyali alan özel bir gen aktive olarak protein üretir ve bu protein başka bir geni uyararak bölünme işlemini başlatır. Bunun için önce çekirdekteki şifreleri taşıyan DNA'nın bir eşinin yapılması gerekir. Enzim adı verilen özel proteinler daha önce DNA'nın yapısında olduğu belirtilen şeker,baz ve fosfat birimlerini kopyalama adı verilen bir işlemle orijinal DNA'daki sıraya göre dizmeye başlar ve işlem bittikten sonra birbirinin tamamen benzeri iki ayrı DNA ortaya çıkar. Eğer kopyalama sırasında yanlış bir dizilim olursa başka bir gen devreye girerek bunu düzeltmeye çalışır, düzeltmezse başka bir gen devreye girerek bölünme işlemini durdurur böylece yanlış genetik şifrenin yeni oluşacak hücrelere geçmesi önlenir. Şimdi kopyalama işleminin doğru yapıldığını varsayalım ve gelişmeleri izleyelim. Artık çekirdekte birbirinin tamamen benzeri olan iki DNA vardır ve bölünme işlemini durduracak bir emir gelmemişse DNA' lar daha öncede değinildiği gibi paketlenerek 46 çift kromozom haline döner. Diğer bir deyişle birbirinin aynısı olan 23 çift iki takım kromozom ortaya çıkar. Bu devreden itibaren 23 çift kromozom hücrenin bir ucuna doğru giderken diğer 23 çift kromozom diğer ucu gitmeye başlar ve hücre ortadan boğumlanıp her birini çevreleyen yeni zarla birlikte özellikleri tamamen aynı olan iki ayrı hücre ortaya çıkar.

6)Gen Terapisi Nedir?
Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır.

Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir.

a)Gen Terapisinin Temel Sorunları
Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar.
Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır.
Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar.
Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikro parçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır.

Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır.

En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır.

b)Genlerin Vücuda Sokulma Yöntemleri
Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir.

c)Engeller
Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır.

d)İlk Gen Terapisi
İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır.

ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez.

Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuvar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi.

Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı. Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar. Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir. Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir. Bu konudaki klinik deneylere başlanmıştır. Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney, beyin tümörlerinin tedavisi amacıyla yürütülmektedir. Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir.

e)Gen Terapisinin Riskleri
Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir. Ayrıca, ne zaman DNA'ya yeni bir gen eklense, bu genin yanlış bir yere yerleşme tehlikesi de vardır. Bu durum, kansere ya da başka bozukluklara yol açabilir. Bundan başka, DNA bir tümöre doğrudan doğruya enjekte edildiğinde, ya da gen nakli için lipozom sistemi kullanıldığında, taşınan yabancı genlerin, çok düşük de olsa istemeyerek eşey hücrelerine girmesi ihtimali vardır. Bu durumda yapılan değişiklik kalıtsal olacak ve sonraki kuşaklara aktarılacaktır. Ancak böyle bir duruma hayvan deneylerinde rastlanmamıştır. Başka bir sorun da, nakli yapılan genin ekspresyonunun çok yüksek oranda olması ve sonucunda da eksikliği hastalığa yol açan proteinin yarardan çok zarar getirecek kadar çok miktarda üretilmesi olasılığıdır.
Bilim adamları, bütün bu riskleri ortadan kaldırmak amacıyla hayvan deneyleri yapmaktadırlar. Alınan önlemler başarılı olmuştur, şu ana değin insanlara uygulanan gen terapilerinde bu potansiyel sorunlar görülmemiştir.

f)Gen Terapisinin Çözüm Bekleyen Sorunları
İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir.

Yukarıda açıklanan yöntemler bugüne değin 300 klinik deneyde 6000 hasta üzerinde kullanılmıştır. Ancak, şu ana değin gerçekten başarılı bir sonuç elde edildiği ileri sürülemez. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Ayrıca, denemelerin büyük bir bölümünün kanser hastalarında yapılmış olması yeni bir sorun yaratmaktadır: Hastaların ölümlerinden dolayı tedaviyi izleyememek. Şu anki duruma göre, önümüzdeki yıllarda gen terapisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen terapisinin başarılı sonuçlar vereceğine inebiliriz.

7)Genomun Getirdikleri
Teknoloji insan bedenine girdi. Bunu normal kabul edip direnç göstermemekte yarar var. Belki ileride bambaşka şeyler gelişecek. Ama bugünlerde önemli bir buluşun heyecanı içinde yaşıyoruz. Dünyanın en gelişmiş altı ülkesinde bulunan 16 laboratuarda çalışan 1190 uzmanın 13 yıldır peşinde koştuğu genom projesinin tamamlandığı bildirilmekte ve bu projenin sonuçlanması ile gizli kalan insan genlerinin tümünün deşifre olduğu açıklanmaktadır. Basit anlamda bir tohum düşünün ektiğiniz zaman nasıl bir fidana sahip olursunuz bunun bilincindesinizdir. Yalnız bu kez genetik özelliklerin deşifre edilmesiyle tüm ayrıntılarla fidanın enini ,boyunu ,yapraklarının adedini ,kıvrımlarının biçimini, kaç dalı olacağını, her bir dalındaki yaprak sayısını bilmek mümkün. Ayrıca, o tohumda beğenmediğiniz yönlerin tespiti ile gerekli mutasyonla istediğiniz, arzu ettiğiniz şekilde yeşermesini de sağlayabilme imkanınız mevcut olacak. Anlatılan şartları günlük yaşamda bireyler üzerinde uygulamak şansını elde edebilsek, bir anlamda fakirle - zengini , güzellik ile çirkinlik kavramlarını dengeleyebilecek ve eşitlik ilkesine dayanan genetik adaletin ortaya çıkmasını sağlayabileceğiz.
Derin bakış açısı ile astrolojik etkilerin insan üzerindeki yansımaları bir anlamda kısmen de olsa düzenlenebilecektir. İnsan için gerekli olan zekanın, aklın, güzelliğin, teminini bir bakıma belirli bir seviyeye getirildiğini düşünelim, acaba zenginlik vasfı nasıl elde edilebilecekti?

Bu çok önemli bir sorun karşısında rızkı oluşturan genlerin –yani rızk genlerinin- de mutasyona uğraması gerekiyor. İlahi bir nizam ve düzeni deşifre edebilmek zoru başarmak demektir.
Ancak makul olmak gerekirse istenileni elde etmek, açıkları, zaafları kapamak dengeli, stabil bir hale getirmek imkansız gibi görünüyor. Bilim tümüyle sorunlara ulaşabilme kapasitesini gösterse bile gerek zaman açısından gerekse ekonomik koşullar bakımından istenileni uygulamak kolay değil. Hatta imkansıza yakın gibi. Bugün bir kalp ameliyatı için vatandaşların altı ay gibi bir süreye yakın sıra bekledikleri herhalde hepimiz tarafından bilinen bir olgudur. Bu şartlarda gen haritası çıkarılan bir insanın istenilen niteliklere ne kadar zamanda ulaşabileceğini, arz/talebin karşılanıp karşılanamayacağını iyi bir düşünmek gerekiyor. Her şeye karşın genomun geliştirilmesi sadece,insana ait özellikleri değil onun varlığını oluşturan enerji alanlarının ve mutlak enerjinin de geninin deşifre edilmesini temin edebilir. Bu edilimin nihai noktası, bütün vasıf ve manaların ve hiçliğe giden yolun bulunmasıdır. Genom gelişmelerini sadece insan üzerinde değerlendirmek, sadece “bilinebilirliğe” kavuşmasını temin etmek popüler bilimin zaferi olarak kabul edilse bile bu aşamada duraksamak doğru olamaz. Genomun hakkı bu değildir. Amacı da bu şekilde olmamalıdır.
Şayet bilimsel nedenlerin üzerinde durulmaz, evrensellik esas alınırsa bilim bütün gücünü evrensel geni deşifre edebilmek için harcaması gerekecektir. Varlığı tümüyle algılamak için bilim adamlarının gözlerini gökyüzüne yıldız kümelerinin manyetik alanlarına dikmesi mantıklı olur.
Bilim insanının görevlerinden biri de bütün yeniliklere açık olması onları uygulama hevesi ve gayreti içinde olmalıdır. Sonsuzluğa ulaşabilmek belirsizlikten kurtulma anlamına geliyor.

Resmi olarak Ekim 1990’da başlamış olan insan genom projesi (İGP), uluslararası niteliğe sahip olup insan kromozomlarının fiziksel haritasının çıkarılmasını, sayısı yaklaşık 100.000 adet olarak tahmin edilen insan genlerinin keşfedilmesini ve bu sayede bu genlerin daha ileri biyolojik çalışmalar için ulaşılır kılınmasını amaçlamaktadır. Günümüzde, tedavisi henüz olanaksız 3000’den fazla genetik hastalık milyonlarca insanın yaşamını etkilemektedir. Bu tip hastalıklardan sorumlu genlerin yapısının aydınlatılması ile “işlevi bozuk” genler için “düzeltmelerin” yapılabileceği, hastalıkların önceden teşhisi ve tedavisinin mümkün hale geleceği tartışmaları, bu projenin başlatılmasındaki en önemli etken olmuştur.

Genetik bilimi, 1860’larda, Gregor Mendel’in kendi yetiştirdiği bezelyeler üzerine yaptığı çalışmalarla başladı. Mendel bezelyelerin çeşitli karakterlerinin (renk, büyüklük, vb. tohum ve çiçek özellikleri) daha sonraları “gen” olarak isimlendirilecek ünitelerle belirlendiğini, bu ünitelerin kalıtım faktörleri olduğunu gösterdi. Bunu, genetik bilgilerin kromozom adı verilen yapılar üzerinde taşındığının bulunması izledi.

Watson ve Crick isimli iki araştırıcının deoksiribonükleik asitin (DNA’nın) yapısını keşfetmesi, insan genom projesinin geçtiğimiz günlerde popüler hale gelmesinden sadece yarım yüzyıl önce gerçekleşti ve bu dev buluş bugünkü gen teknolojilerine olanak veren bir dönüm noktası oluşturdu. 1970’lerde DNA üzerindeki belirli genlerin izole edilebildiği, bu genlerin kesilip biçildiği ve yeniden yapılandırıldığı “genetik mühendisliği” uygulamaları başladı.

organizmayı oluşturmak için gerekli bilgilerin toplamına genom diyoruz. Bir diğer tarifle, bir hücredeki genetik materyalin tamamı o organizmanın genomunu oluşturur. Yine diğer bir tanımla genom, bir organizmanın DNA’sının tamamı olup o organizmanın yaşamı boyunca tüm yapı ve aktivitelerini belirleyecektir. Tüm bu tanımlar, genomun DNA materyalinden ibaret olduğunu, her iki terimin de genetik materyali ifade ettiğini göstermektedir. Bu materyal, sıkı bir yumak halinde biçimlenerek kromozom adını verdiğimiz silindirik yapıları oluşturur. Prokaryot adı verilen tek hücreli basit canlılarda (bakteriler) tek bir kromozom oluşturan bu materyal hücre içerisinde serbest iken, ökaryot adını verdiğimiz daha ileri canlılarda (algler, mantarlar, bitkiler, hayvanlar, insanlar) her hücrede birden fazla kromozom şeklinde bulunur ve bu kromozomlar özel bir kompartman olan hücre çekirdeği içinde yer alırlar. Serbestçe açılması halinde 2 metreye yaklaşan DNA molekülü, sıkı bir yumak oluşturması sayesinde mikroskobik büyüklükteki hücreye sığmaktadır.

İnsan genom projesinin temel hedefi, insan genomunun detaylı bir fiziksel haritasını elde etmektir. Baz çifti sayısı temelinde genlerin dizilimi ve aralarındaki mesafeyi gösterecek bu haritanın elde edilmesi, ancak DNA üzerindeki nükleotidlerin dizilim analizi (sekanslama) ile mümkündür. Elde edilen insan genomu referans dizisi, yeryüzünde yaşayan her bireyin genom dizisine birebir uymayacaktır Örnekler çok sayıda gönüllüden özel bir protokolla alınmış olup bu örneklerden çok azı projede kullanılmaktadır. Örnekleri veren kişilerin ismi saklıdır; dolayısı ile hem örneklerin sahipleri, hem de bilim adamları bu projede kullanılan DNA’ların kimlere ait olduğunu bilmemektedirler. Kadınlardan kan örnekleri, erkeklerden ise sperm örnekleri alınmıştır, kadınlarda Y kromozomu bulunmadığından sperm örnekleri özellikle önemlidir. İlk referans genom dizisinin oluşturulmasının 10-20 birey bazında olacağı tahmin edilmektedir.

Fiziksel haritanın elde edilmesi için öncelikle seçilen kromozomun çok küçük parçacıklara ayrılması, bu parçacıkların ayrı ayrı dizi analizlerinin yapılması ve elde edilen verilerin birleştirilmesi gerekir. Bu amaçla, restriksiyon enzimleri adı verilen ve DNA’nın belirli dizilerini tanıyıp molekülü o dizilerden kesen enzimler kullanılır.Daha sonra, elde edilen parçacıkların daha ileriki çalışmalarda kullanılabilmesi için klonlanması (çok sayıda kopyasının elde edilmesi) işlemine geçilir. Farklı DNA parçacıklarında birbiri ile örtüşen diziler belirlenmek suretiyle kromozom boyunca uzun bir segmenti, hatta tüm kromozomu temsil eden sıralı bir klonlar koleksiyonu (kontig) elde edilir. Bu yolla elde edilen harita “kontig harita” olarak isimlendirilir.

Günümüzde nükleotid dizilimi analizi için DNA çiplerinin kullanıldığı yeni yöntemler de mevcuttur, ancak en yaygın olarak kullanılan yöntemde temel adımlar şunlardır: Öncelikle her bir kromozom (50-250 milyon baz çifti) enzimlerle çok daha küçük parçacıklara (yaklaşık 500 baz çifti; Celera Genomics’te geliştirilen yeni ve hızlı yöntemde 2000-10.000 baz çiftlik parçalarla başlandığı bildirilmektedir) bölünür. Makinelerle yapılacak olan dizi analizi için her bir parçacığın milyarlarca kopyası gerekir. Bu nedenle parçacıklar bakteri hücrelerinde klonlanırlar ve çok hızlı çoğalan bakteriler kopya makineleri gibi bu parçacıkları çoğaltırlar. Bu şekilde çoğaltılan DNA materyali, özel boyalarla muamele edilerek her bir baz çeşidinin (A, T, G, ya da C) lazer ışık altında farklı bir renk vereceği biçimde boyanır, daha sonra parçacıkların elektroforezleri yapılarak büyüklüklerine göre ayrılırlar ve bu süreçte lazer ışını ve kamera bazların boyanma rengini kaydederek 4 renkli kromatogram oluşturulur. Tüm bu işlemler insan eliyle değil, otomatik dizi analiz cihazı kullanılarak yapılmaktadır. Bazlar “okunduktan” sonra bilgisayarlar aracılığıyla dizilim analiz edilir. Katrilyonlarca hesaplama sonucu parçacıkların dizilim bakımından birbirleri ile örtüşen uçları yan yana getirilmek suretiyle dizilim yeniden düzenlenir. Analiz hataları, gen bölgeleri (insan genomunda bilinen fonksiyonel proteinleri kodlayan genler, toplam genomun sadece yaklaşık %5’ini oluşturmaktadır, geriye kalan kısım ise gen aktivitesini kontrol eden ya da henüz fonksiyonu bilinmeyen bölgelerdir), daha önce bilinen genlere ne oranda benzerlik gösterdiği, vb. belirlenir.

Her bir DNA parçası 5 kez dizilim analizinden geçmişse, elde edilen bulgular “taslak” dizilimi oluşturur. Analiz 10 kez yapıldığında ise “final” dizilim (hata oranı 1/10.000) elde edilir. Bugünkü analiz sonuçları %90-95 doğrulukta bir müsvedde analiz sonuçlarıdır. Hatalar ve bazı boşluklar halen mevcuttur, yüksek kaliteli referans diziliminin 2003 yılında elde edileceği bildirilmektedir. Ancak, final dizilimin elde edilmesi projenin nihai amacı değildir; bulunan genlerin fonksiyonlarının ve birbirleriyle etkileşiminin anlaşılması çalışmaları sürecek, buna paralel olarak çeşitli hastalıkların tedavisi için geni ya da kodladığı proteini hedef alan yeni ve etkin ilaçların tasarım ve denenmesine devam edilecektir (sorumlu genin aydınlatılmış olduğu bir çok hastalık için halen bu yönde çalışmalar sürmektedir).

Proje bünyesinde robotiklerin ve bilişim teknolojisinin önemi özellikle not edilmelidir. Sadece insan gücü kullanılarak projenin gerçekleştirilebilmesi neredeyse olanaksızdır. Robot kolları olan yüzlerce makine, aynı anda, DNA parçacıklarını dizilim analizi için ince cam tüplere pompalamaktadır. Bunun yanı sıra, veritabanı ve yazılım geliştirme alanlarındaki ilerlemeler de bu projeye hız kazandırmıştır. Teknoloji ilerledikçe ve dizilim bulguları çok büyük bir hacim tutacak şekilde biriktikçe, eldeki bilgilere sahip çıkmak, organize etmek ve bunları yorumlayabilmek için daha sofistike bilgi işlem kaynaklarına gereksinim olacaktır. Proje ile ilgili tüm araştırıcıların dünyanın her yerinden dizilim bulgularına ulaşıp onları kullanabilmeleri, projenin başarısının doğrudan ölçütüdür. Perkin Elmer, Celera Genomics için 1 milyar dolar harcamış, en hızlı analitik cihazları (300 adet) ve yüksek performanslı süper bilgisayar teknolojisini temin etmiştir. Özel bir yazılım ile 80 terabayttan fazla veri işlenebilmiştir. Bu nedenlerle, Celera Genomics’in gen dizilimi analizi yapan diğer tüm laboratuarlara göre en az 3 kat daha hızlı çalışabildiği ifade edilmektedir. Bunun vurgulanması için, Celera laboratuarlarının aylık elektrik faturasının 60.000 dolar olduğu belirtilmektedir. Şirket yöneticileri, 9 ay gibi kısa bir süre içinde etnik kökenleri farklı toplam 5 birey için (3 kadın, 2 erkek) 15 milyara yakın baz çiftinin diziliminin tamamlandığını açıklamaktadır.
Top